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Brief review of quantum annealing basics

Technique for problem embedding into the quantum hardware

Optimizing the spin reversal transform

Getting information about the quantum annealing dynamics

Quantum annealing optimization using an initial solution
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dels for quantum computing

* Gate model quantum computing
— Analog of a Turing machine, general-purpose  ~ Bt
— Programmed as a sequence of gates *

* Adiabatic computing

— Transition a time-dependent Hamiltonian
towards one encoding the solution of the oo | —=| TH
problem in its ground state

— Theoretically equivalent to the gate-model

* Quantum annealing
— Practical implementation of the adiabatic computing model
— Due to very short execution times and hardware noise no
optimality can be guaranteed




Review: solving optimization problems on D-Wave

1. Reformulate the given optimization problem as:

mln (E a;xr; + E a”xxj>
cTp \ 4

1<i<j<n
— lIsing formulation: z; € {—1,1}
— QUBO formulation: z; € {0,1}

2. Map problem onto DW hardware

— Embed connectivity graph defined by a;;
coefficients into the quantum hardware

— Encode a;; and a; coefficients in DW

3. Anneal, read solutions in a loop

H(t) = A(t) H; + B(t) Hp




Problem embedding techniques




Chaining several physical qubits / broken chains

Example: min{z; — 2 — 323 — 2120 — 3123 + 2mp3}  [1,1,1]

T «‘bed

zoomed it

Zo T3

program graph .
one cell hardware (Chimera) graph

Split z; into z{ and z5. Problem becomes

min{0.5(x] + 2]") — 22 — 313 + z{ 12 — 3] 23 + 22003 [~ 1,1,—1,1]
Add constraint: subject to 2y = a7’
Moving the constraint inside the objective, problem becomes
min{0.5(z] + 2]') — 12 — 323 + | 22 — 31/ 73 + 210203 + M (2] — 2]')?},
or
min{0.5(x] 4+ 21") — 2 — 323 + 2 10 — 3] ¥3 + 22023 — 2 M1 2]’ }.

M should be neither too small, nor too large. <>|,4|<-|-

6/28 6/28




Broken chains are a common phenomenon
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Figure 1: Proportion of broken chains for the Maximum Cut, Maximum
Clique, Minimum Vertex Cover, and Graph Partitioning problems for 65
vertex graphs, as a function of the graph density using uniform torque
compensation to calculate the chain strength for each problem.
O VKT
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D-Wave's default unembedding options

m Majority vote: Suppose qubit z; is mapped onto the quantum
chip as a chain xl-(l),...,a;i(m). The final value of z; is set to the

most common value among the m chained qubits.

® Random weighted unembedding: Calculate the proportion
(empirical frequencies) of 0's and 1's in the chain mi(l),...,x-(m),
and set z; to the value of a coin flip with probability set to the

empirical frequencies.

m Minimize energy: Calculate the value of the Hamiltonian based
on all unbroken chains, iteratively probe values of broken chains,
and assign final values based on a priority score.
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Tailored unembedding techniques

General idea:

m Determine set U of unbroken chains and set B of broken chains.

m The solution spanned by unbroken chains having value 1 is then
used as a baseline solution (e.g., an initial clique).

m Main loop: iterate over broken chains in B and use context
specific knowledge of the problem to determine what value the
variable corresponding to the broken chain should be assigned.

m Increase efficacy by using additional information provided by the
annealer. In case of a tie, we take into account the percentages
of 1 and 0 (or —1 for Ising) assigned to the qubits of each chain.
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Example: graph partitioning

Graph Partitioning problem: Minimize the cut of a graph, while
keeping the two parts sizes balanced.
Unembedding algorithm:

Takes care of the balance requirement for the two parts. Construct
the "blue” and "red” sets for unbroken (U) set only. Repeat the
following two steps.

Pick arbitrary vertex belonging to
broken chains in B, and allocate it
to the part in which it has the
lower degree.

If one part contains [65/2]
vertices, assign all remaining

vertices belonging to broken
chains in B to the other part. <> MKT




Experiments: Graph Partitioning

Graph Partitioning

2o M
£
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density

Figure 2: Graph Partitioning problem. Benchmark are the three default
unembedding options (majority vote, random weighted, minimize energy)
provided by D-Wave Systems, Inc.
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Optimizing the spin reversal




The spin reversal transform

Ising problem: Is = Zhﬂi +ZJijxixj (z; e {-1,1})
7 ]
Idea:

m Modify Ising Is so that a certain variable sign gets flipped.
m Leave ground state of the Ising invariant.

m Potential to average out and reduce errors.

To be precise:

m Switch sign of z; by defining a new Ising model Is" with
al — —a; as well as a;; — —ay and aj; — —aj;.

m The minimum values of Is and Is’ are equal, and a minimum of
Is' can be transformed into one of Is by flipping z;.

m Reverse set of variables and check if annealing solution better.
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Optimizing spin reversal

m Standard DW function: choose a random set of bits to flip.

m How much can be gained if the set of flipped bits is
optimized?

m Search for an optimal set using a genetic algorithm:

>

>

Start with a random initial generation of bitstrings
S ={010101..., 101011...,...};

Reverse qubits in Is according to strings in S and get the
annealing results;

Randomly combine pairs from the lowest-energy top strings to
get the new generation;

Flip some bits with probability the mutation rate parameter;
Repeat until halting condition met.
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Results for spin reversal

Optimization using a genetic algorithm.
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Using quenching for slicing the anneal process
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The annealing process and anneal schedule

m Input Ising problem:
Is = Zhﬂi +2Jijx,~zj (x; €{-1,1})
. 2
m Initial and Problem Hamiltonians:
H]ZZG? Hp:Zhin—i-ZJiijG;
i i ij

15

m Combined Hamiltonian: /
3 10
H(s)=A(s)H;+B(s)Hp 2
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Specifying a schedule: specifying the anneal fraction function
s =s(t)
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Using quenching to peek into the anneal process

m Idea: take "snapshots” of intermediary states

A
1 I I I I I I '°"'*""°"'
[ R R
S i | | | Slice 1
5 | | | B Slice 2
. i i Slice 3
| Pllch 1 M Slice 4
Gam
rotauonz
L L >
0 2 4 6 " 8 CT scan analogy

m Issue: hardware-imposed constraints on schedules
> 5(0)=0,s(T)=1
> Bounded angle (quench cannot go completely vertical)
» Implies that quench time is at least ~ 1us long

Challenge: 1us taken by the quench may be too long

(may significantly alter the ground state)
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Dealing with the problem: slow down the anneal

m |dea: Search for Ising/QUBOs that take much longer to anneal
to near-optimality
m Implementation:

» Use a genetic algorithm to "optimize” QUBOs
> Fitness function: difference between 1000us (total anneal time)
and 1us (quench time)

m Comparing slicing results for random vs optimized Ising models:
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Slicing results
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Using h-gain for planting an initial solution
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The h-gain schedule

m Hamiltonian for a regular annealing
H(s) = _@(Z &) + 5(s) (Y hel)+ Y 1,60060),
2 \3 2\
m Hamiltonian with an h-gain function, g(t)
A(S) (& A B(s) / & N (i) Al
Hg(s) = —;) ( Z (53(,:)) +g)< Z g(t)hiﬁ(z)—{—z Jing )ng)),
i=1 i= ;

m Our approach: use ¢(t) and linear terms h; to encode an initial
solution
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Encoding an initial solution

m Ising without a linear term

» Example problems: Maximum Cut, Graph Partitioning
» Add a linear term to encode an initial solution

x©) = (z0,...,29) — initial solution
h(z) =Y" 1 (—z?)z; — corresponding linear term
> Example: Initial solution s =[—1,1,1,-1].

Define linear term z; — 20 — 23 + 24.
The minimum of that linear function is s.

m Ising problems with a linear term
> Add a new variable z to homogenize the Ising

Z h;x; + Z Jijrim; = Z h;x;z + Z Jij % w;

1<J =1 1<J

» Ensure z =1 in an optimal solution (e.g. by using a penalty)
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» Use the method for Ising problems without linear terms




Parameter setting procedure

Required parameters: annealing schedule (function s(¢)), h-fain
schedule (function ¢(t)), total anneal time T'

Large parameter space

No guidelines about what shape for g(¢) may work

Bayesian optimization used

» can do black-box optimization
» works with noisy objective functions

Simplifications:
» optimize for T first
> use the default s(t)=t/T
> restrict g(¢) to have a single internal knot (z,y)




Results

m Optimizing parameters (maximum cut)
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m Comparison: h-gain vs reverse annealing
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Conclusion

m Quantum annealers can use tunable hardware parameters to
improve their performance

m Finding optimal values of such parameters is itself a hard
optimization problem

m Methods discussed in this talk include

» Unembedding broken chains
» Optimizing the spin reversal transform

» Inferring information about the QA dynamics

» Using h-gain for indicating an initial solution
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