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Sensitive dependence on initial conditions

X(1)

\M
X(1)408(7)

5(t) ~ 8(0)e

A > 0 is the Lyapunov exponent.
Predictability horizon (Lyapunov time) T is defined by:

tol
T = —In(—
(%)

where tol is our tolerance and € is the round-off unit (precision).
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What do we need to compute the longest term
reliable trajectory?

We need:
1. A multiple-precision floating point arithmetic.

G M P Multiple Precision <
«Arthmetic without limitations:» Arithmetic Library ——

2. For efficiency we need a class of numerical methods allowing arbitrary
high order of accuracy.

Breaking the limits: The Taylor series method
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3.Parallelization of the algorithm

MPI+OpenMP parallel technologies, MPIGMP library
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Using 1200 CPUs of the National Supercomputer TH-A1 and a parallel integral algorithm based on the 3500th-order Taylor ex-
pansion and the 4180-digit multiple precision data, we have done a reliable simulation of chaotic solution of Lorenz equation in a
rather long interval 0 < ¢ < 10000 LTU (Lorenz time unit). Such a kind of mathematically reliable chaotic simulation has never
been reported. It provides us a numerical benchmark for mathematically reliable long-term prediction of chaos. Besides, it also
proposes a safe method for mathematically reliable simulations of chaos in a finite but long enough interval. In addition, our very
fine simulations suggest that such a kind of mathematically reliable long-term prediction of chaotic solution might have no physical
meanings, because the inherent physical micro-level uncertainty due to thermal fluctuation might quickly transfer into macroscopic
uncertainty so that trajectories for a long enough time would be essentially uncertain in physics.

chaos, reliable simulation, uncertainty propagation

PACS number(s): 05.45.Pq. 05.40.Ca
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The model problem

We consider as a model problem the paradigmatic Lorenz system [1],
which is derived from a simple model of atmospheric convection.
Historically the Lorenz system is the first example of a system

with a chaotic attractor.

dx

E:a(y—w)

dy

< — Rxr —y — 1
o T —y— T2 (1)
dz .

— = xy — bz

dt Yy ’

We consider the standard Salztman's parameter values:

R=280=10b=8/3

[1] Lorenz, Edward N. "Deterministic nonperiodic flow."JJournal of
the atmospheric sciences 20.2 (1963): 130-141.
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The model problem

For these parameters the system has a chaotic attractor with Lyapunov
exponent A ~ 0.906. The Lorenz system has three unstable fixed
points. One of them is the origin Py = (0, 0,0), and the other two
are symmetric: P, and P_, with coordinates:

(£b(R—1),+b(R — 1), R—1) ~ (+8.485, +8.485, 27)

R. Barrio et al. / Computer Physics Communications 194 (2015) 76-83

Fig. 1. The Lorenz attractor and the symbolic notation
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Taylor series method

Generally we want to solve numerically the initial value problem

U'(t) = f(U(t)),t € [0,T]

[]P(()) — l]b
with the multiple-precision Taylor series method. We assume that f is
analytic on its domain of definition and that U (¢) is defined in [0, T'].
The N-th order Taylor series method for unknown vector U (%) is given
by the expression:

1dU 9 (t)
il dt

N

Ut+T1) = Z U["]q-", Ul — ,
i=0

where U are the so called normalized derivatives. We use an adaptive

step-size strategy. The stepsize 7 is determined by the last two terms

of the Taylor expansions:
1

e—0.7/(N—1) 1 N1 1 N
T = min
e? <||U[N—11||oo> ’ <||U[N]||oo>
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Computing the Taylor coefficients (the normalized derivatives)
From equation (1) we have
U(yO T m0)9

Y1 = Rxy — Yo — Tozo0,
zZ1 = XoYo — bzy.

L1

By applying Leibniz rule we obtain the following procedure for computing
the normalized derivatives x;, y;, z; fort = 0, ..., N — 1.

Bis1 = 0 (s — @),
1 i

Yit1 = i x 1(R33z' —Yi — j;o Ti jZ;), (2)
1 i

Fitl = o 1(;::0 T;_jY; — bz;).
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Pseudocode of Taylor series method for the Lorenz system

while (time < T)
{
//' Computing derivatives - O(N”2)
for (i = 0; i<N; i++)
{
s1=0.0;
s2=0.0;
for (j=0; j<=i; j++)
{

s1=s1+x[i-]*2[jl;
s2=s2+x[i-][*y[i];

}

x[i+1] = Sigma*(y[i]-x[i])/(i+1);
yli+1] = (R*X[i]-y[i]-s1)/(i+1);
z[i+1] = (s2-b*Z[i])/(i+1);

}

/' One step with Horner's rule - O(N)
h1=x[N]J;

h2=y[N];

h3=z[N];

for (i=N-1; i>=0; i--)

h1=h1*tau+x[il;
h2=h2*tau+y([i];
h3=h3*tau+z[i];

}

x[0]=h1;
y[0]=h2;
z[0]=h3;

time+=tau;
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MPIGMP library

To explain to MPI how to package and unpackage GMP multiple
precision types, one needs good knowledge of both underlying representation
of these types and MPl. Tomonori Kouya done an excellent work by
creating additional libraries for MPI programs which want to use MPFR
and GMP multiple precision libraries. We rely on the tiny MPIGMP
library of Tomonori Kouya.
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Computational resources

The large computations for the reference solution in the time interval
[0,11000] and the presented results for the performance are from Nestum
Cluster, Sofia, Bulgaria.

Nestum Cluster is part of the SofiaTech park science laboratory
complex, Sofia, Bulgaria. Nestum is a homogeneous HPC cluster based
on two socket nodes. Each node consists of 2 x Intel(R) Xeon(R) Processor
E5-2698v3 (Haswell) with 32 cores at 2.3 GHz.

L3s

Figure 12.4: A typical NUMA server-node with logical CPU numbers
A server with two 16-coreIntel® Xeon™ E5-2698 v3 CPUs showing how the operating
system maps logical CPU numbers onto hardware threads.

picture from: T. G. Mattson, Y. He, and A. E. Koniges. "The OpenMP common core."(2019).
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Estimation of the needed precision and order of the method
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T, is the critical predictable time - a kind of practical Lyapunov time.
IN - the order of the Taylor series method

K - the number of the exact decimal digits of the precision

T, = 255K - 81

In(10) /A = In(10)/0.906 = 2.54148 = 2.55
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Results

e We computed a reference solution in the rather long time interval
[0,11000]! for z(0) = —15.8,y(0) = —17.48, 2(0) = 35.64
(the same initial conditions as in Liao and Wang work in order to check
their benchmark table). This is &= 40% larger problem then those for
[0,10000]. The reference solution at £ = 11000 with 60 correct digits:

x=6.10629269055689971917782003095370055267185885053970862735508
y=-3.33795350928712428173974978144552360814210542698512462640748

z=34.1603471532583648867450334710712261840913307358242610005285

e We performed two large computations with 256 CPU cores (8
nodes in Nestum). The first computation is with 4566 decimal digits
of precision and 5240-th order method. The second computation is for
verification - with 4778 decimal digits of precision and 5490-th order
The first computation lasted = 9 days and 18 hours and the second =
11 days and 7 hours.
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Results

® By estimating the time needed for the same accuracy and with fixed
stepsize 0.01, we conclude that by applying variable stepsize strategy we
have 2.1x speedup.

® Although the work per step in the case of variable stepsize increases
by ~ 80%((2.98/2.22)® = 1.80), the average stepsize is == 0.034
and thus the overall work is &= 53% from the work in the case of fixed
stepsize 0.01. Also the parallel efficiency increases from 55.5% up to
63.6% for the first computation and from 56.2% up to 64.3% for the
second. The overall speedup with 256 cores for the first computation is
163, for the second - 165.
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Conclusions

World record for the longest term reliable trajectory for the paradigmatic
Lorenz system is achieved on Nestum cluster. Using variable stepsize
strategy not only makes the Taylor series algorithm more robust and
decreases the computational work for a given accuracy, but also gives a
higher parallel efficiency. Parallelized version of multiple precision Taylor
series algorithm should be used with a variable stepsize strategy as a
better alternative of the fixed stepsize one.
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