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Sensitive dependence on initial conditions

δ(t) ∼ δ(0)eλt

λ > 0 is the Lyapunov exponent.
Predictability horizon (Lyapunov time) T is de�ned by:

T =
1

λ
ln(
tol

ε
)

where tol is our tolerance and ε is the round-o� unit (precision).
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What do we need to compute the longest term
reliable trajectory?

We need:
1. A multiple-precision �oating point arithmetic.

2. For e�ciency we need a class of numerical methods allowing arbitrary
high order of accuracy.

3.Parallelization of the algorithm

MPI+OpenMP parallel technologies, MPIGMP library
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The model problem

We consider as a model problem the paradigmatic Lorenz system [1],
which is derived from a simple model of atmospheric convection.
Historically the Lorenz system is the �rst example of a system
with a chaotic attractor.

dx

dt
= σ(y − x)

dy

dt
= Rx− y − xz

dz

dt
= xy − bz,

(1)

We consider the standard Salztman's parameter values:

R = 28, σ = 10, b = 8/3.

[1] Lorenz, Edward N. "Deterministic nonperiodic �ow."Journal of
the atmospheric sciences 20.2 (1963): 130-141.
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The model problem

For these parameters the system has a chaotic attractor with Lyapunov
exponent λ ∼ 0.906. The Lorenz system has three unstable �xed
points. One of them is the origin P0 = (0, 0, 0), and the other two
are symmetric: P+ and P−, with coordinates:
(±
√
b(R− 1),±

√
b(R− 1), R−1) ∼ (±8.485,±8.485, 27)
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Taylor series method

Generally we want to solve numerically the initial value problem

U
′
(t) = f(U(t)), t ∈ [0, T ]

U(0) = U0

with the multiple-precision Taylor series method. We assume that f is
analytic on its domain of de�nition and that U(t) is de�ned in [0, T ].
The N-th order Taylor series method for unknown vector U(t) is given
by the expression:

U(t+ τ ) =
N∑
i=0

U [i]τ i, U [i] =
1

i!

dU (i)(t)

dti
,

where U [i] are the so called normalized derivatives. We use an adaptive
step-size strategy. The stepsize τ is determined by the last two terms
of the Taylor expansions:

τ =
e−0.7/(N−1)

e2
min


(

1

‖U[N−1]‖∞

) 1
N−1

,

(
1

‖U[N]‖∞

) 1
N


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Computing the Taylor coe�cients (the normalized derivatives)

From equation (1) we have

x1 = σ(y0 − x0),

y1 = Rx0 − y0 − x0z0,

z1 = x0y0 − bz0.

By applying Leibniz rule we obtain the following procedure for computing
the normalized derivatives xi, yi, zi for i = 0, ..., N − 1.

xi+1 =
1

i+ 1
σ(yi − xi),

yi+1 =
1

i+ 1
(Rxi − yi −

i∑
j=0

xi−jzj),

zi+1 =
1

i+ 1
(

i∑
j=0

xi−jyj − bzi).

(2)
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Pseudocode of Taylor series method for the Lorenz system

    while (time < T)
    {
        //! Computing derivatives - O(N^2)
        for (i = 0; i<N; i++)
        {
            s1=0.0;
            s2=0.0;
            for (j=0; j<=i; j++)
            {
                s1=s1+x[i-j]*z[j];
                s2=s2+x[i-j]*y[j];
            }
            x[i+1] = Sigma*(y[i]-x[i])/(i+1);
            y[i+1] = (R*x[i]-y[i]-s1)/(i+1);
            z[i+1] = (s2-b*z[i])/(i+1);
        }
        //! One step with Horner's rule - O(N)
        h1=x[N];
        h2=y[N];
        h3=z[N];
        for (i=N-1; i>=0; i--)
        {
            h1=h1*tau+x[i];
            h2=h2*tau+y[i];
            h3=h3*tau+z[i];
        }
        x[0]=h1;
        y[0]=h2;
        z[0]=h3;

        time+=tau;
    }
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MPIGMP library

To explain to MPI how to package and unpackage GMP multiple
precision types, one needs good knowledge of both underlying representation
of these types and MPI. Tomonori Kouya done an excellent work by
creating additional libraries for MPI programs which want to use MPFR
and GMP multiple precision libraries. We rely on the tiny MPIGMP
library of Tomonori Kouya.



D
ra
ft

11/15

JJ
II
J
I

Back

Close

Computational resources

The large computations for the reference solution in the time interval
[0,11000] and the presented results for the performance are fromNestum
Cluster, So�a, Bulgaria.
Nestum Cluster is part of the So�aTech park science laboratory

complex, So�a, Bulgaria. Nestum is a homogeneous HPC cluster based
on two socket nodes. Each node consists of 2 x Intel(R) Xeon(R) Processor
E5-2698v3 (Haswell) with 32 cores at 2.3 GHz.

picture from: T. G. Mattson, Y. He, and A. E. Koniges. "The OpenMP common core."(2019).
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Estimation of the needed precision and order of the method
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N
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Fixed stepsize τ=0.01,  Tc=2.98*N - 76
Variable stepsize,          Tc=2.22*N - 78

.

.

Tc

Tc is the critical predictable time - a kind of practical Lyapunov time.
N - the order of the Taylor series method
K - the number of the exact decimal digits of the precision
Tc = 2.55K - 81
ln(10)/λ = ln(10)/0.906 = 2.54148 ≈ 2.55
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Results

• We computed a reference solution in the rather long time interval
[0,11000]! for x(0) = −15.8, y(0) = −17.48, z(0) = 35.64
(the same initial conditions as in Liao and Wang work in order to check
their benchmark table). This is ≈ 40% larger problem then those for
[0,10000]. The reference solution at t = 11000 with 60 correct digits:

• We performed two large computations with 256 CPU cores (8
nodes in Nestum). The �rst computation is with 4566 decimal digits
of precision and 5240-th order method. The second computation is for
veri�cation - with 4778 decimal digits of precision and 5490-th order
The �rst computation lasted ≈ 9 days and 18 hours and the second ≈
11 days and 7 hours.
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Results

• By estimating the time needed for the same accuracy and with �xed
stepsize 0.01, we conclude that by applying variable stepsize strategy we
have 2.1x speedup.

• Although the work per step in the case of variable stepsize increases
by ≈ 80%((2.98/2.22)

2
= 1.80), the average stepsize is ≈ 0.034

and thus the overall work is ≈ 53% from the work in the case of �xed
stepsize 0.01. Also the parallel e�ciency increases from 55.5% up to
63.6% for the �rst computation and from 56.2% up to 64.3% for the
second. The overall speedup with 256 cores for the �rst computation is
163, for the second - 165.
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Conclusions

World record for the longest term reliable trajectory for the paradigmatic
Lorenz system is achieved on Nestum cluster. Using variable stepsize
strategy not only makes the Taylor series algorithm more robust and
decreases the computational work for a given accuracy, but also gives a
higher parallel e�ciency. Parallelized version of multiple precision Taylor
series algorithm should be used with a variable stepsize strategy as a
better alternative of the �xed stepsize one.
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