Artificial intelligence aided correlation analysis applied to air pollution influence on morbidity.

Prof. Stefka Fidanova, PhD
Petar Zhivkov
Institute of Information and
Communication Technologies
Bulgarian Academy of Science

Air Pollution

 Around 25% of premature deaths associated with Air Pollution are respiratory by nature

Research Methodology

- Method InterCriteria Analysis
 - Data Collection January 2018 March 2019

M Hadjiski · KT Atanassov Editors

Intuitionistic
Fuzziness and
Other Intelligent
Theories and Their
Applications

- Introduced criteria
- for "agreement" $-\mu$ and
- "disagreement" –

$$\mu + \nu \leq 1$$

Set of objects O={O₁,O₂,...,O_n}

• Set of criteria $C(O)=\{C(O_1),C(O_2),...,C(O_n)\}$

•
$$C_{i,j} = \langle C(O_i), C(O_j) \rangle$$

• $C^*(O)=\{C_{i,j}\}$

All internal comparison of each criteria fulfill exactly one of three relations R, R*,R**

RUR*UR**=C*(O)

$$V_{k}(C) = \begin{cases} 1 & \text{if } V_{k}(C) \in R \\ -1 & \text{if } V_{k}(C) \in R * \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{split} V_k &= V_k(C) - V_k(C') \\ \mu(C,C') &= 0 \\ for \ k &= 0 \ to \ \frac{n(n-1)}{2} \ do \\ if \ V_k &= 0 \ than \ \mu(C,C') = \mu(C,C') + 1 \\ end \ for \\ \mu(C,C') &= \frac{2}{n(n-1)} \mu(C,C') \end{split}$$

$$v(C,C') = 0$$

$$for k = 0 to \frac{n(n-1)}{2} do$$

$$if |V_k| = 2 than v(C,C') = v(C,C') + 1$$

$$end for$$

$$v(C,C') = \frac{2}{n(n-1)} v(C,C')$$

InterCriteria Analysisagreement – 1 month

PM10	PM2.5	Diabet	ear	heart	Raspir	gastritis	hipert	astma
1	0.91	0.62	0.79	0.58	0.91	0.68	0.65	0.79
0.91	1	0.59	0.76	0.48	0.88	0.67	0.61	0.73
0.62	0.59	1	0.77	0.76	0.65	0.71	0.71	0.76
0.79	0.76	0.77	1	0.80	0.85	0.71	0.77	0.88
0.58	0.48	0.76	0.80	1	0.74	0.58	0.45	0.65
0.91	0.88	0.65	0.85	0.74	1	0.65	0.68	0.79
0.68	0.67	0.71	0.71	0.58	0.65	1	0.74	0.82
0.65	0.61	0.71	0.77	0.45	0.68	0.74	1	0.73
0.79	0.73	0.76	0.88	0.65	0.79	0.82	0.73	1

InterCriteria Analysisagreement – 4 days

PM10	Diabet	ear	heart	Raspir	gastritis	hipert	astma
1	1	0.40	0.52	0.62	0.78	0.59	0.48
1	1	0.46	0.48	0.61	0.63	0.56	0.44
0.40	0.46	1	0.48	0.54	0.46	0.58	0.49
0.52	0.48	0.48	1	0.58	0.57	0.54	0.50
0.62	0.61	0.54	0.58	1	0.65	0.60	0.47
0.78	0.63	0.46	0.57	0.65	1	0.58	0.38
0.59	0.56	0.58	0.54	0.60	0.58	1	0.48
0.48	0.44	0.49	0.50	0.47	0.38	0.48	1

- Thurston, G.D., et al., A joint ERS/ATS policy statement: what constitutes an adverse health e ect of air pollution? An analytical framework. European Respiratory
- Journal, 49(1), (2017).
- 2. Samet, J. and D. Krewski, Health e ects associated with exposure to ambient air
- pollution. Journal of toxicology and environmental health, Part A 70(3-4), 227-242
- (2007)
- 3. Li, P., et al., The acute e ects of ne particles on respiratory mortality and morbidity
- in Beijing, 2004{2009. Environmental Science and Pollution Research 20(9) 6433-6444 (2013)

Thank you for attention