More than 12,000 new periodic free-fall orbits for the three-body problem

Ivan Hrsitov, Radoslava Hristova, Faculty of Mathematics and Informatics, Sofia University, Bulgaria

Importance of periodic orbits

'... what makes these (periodic) solutions so precious to us, is that they are, so to say, the only opening through which we can try to penetrate in a place which, up to now, was supposed to be inaccessible..."

[^0]
Overview of numerical search for periodic orbits

Three Classes of Newtonian Three-Body Planar Periodic Orbits

Milovan Šuvakov* and V. Dmitrašinović
Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia (Received 2 November 2012; published 14 March 2013)

We present the results of a numerical search for periodic orbits of three equal masses moving in a plane under the influence of Newtonian gravity, with zero angular momentum. A topological method is used to classify periodic three-body orbits into families, which fall into four classes, with all three previously known families belonging to one class. The classes are defined by the orbits' geometric and algebraic symmetries. In each class we present a few orbits' initial conditions, 15 in all; 13 of these correspond to distinct orbits.

PACS numbers: 45.50.Jf, 05.45.-a, 95.10.Ce

Overview of numerical search for periodic orbits

SCIENCE CHINA

Physics, Mechanics \& Astronomy
CrossMark
\&click for updates

- Article •

More than six hundred new families of Newtonian periodic planar collisionless three-body orbits

XiaoMing Li ${ }^{1}$, and ShiJun Liao ${ }^{1,2^{*}}$
${ }^{1}$ School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China;
${ }^{2}$ MoE Key Laboratory in Scientific and Engineering Computing, Shanghai 200240, China

Received July 4, 2017; accepted July 11, 2017; published online September 11, 2017

Overview of numerical search for periodic orbits

New Astronomy 70 (2019) 22-26

Collisionless periodic orbits in the free-fall three-body problem
Xiaoming Li ${ }^{\text {a }}$, Shijun Liao ${ }^{*, a, b, c}$
${ }^{\text {a }}$ Centre of Advanced Computing, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
${ }^{\mathrm{b}}$ School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
${ }^{〔}$ Ministry-of-Education Key Laboratory in Scientific and Engineering Computing, Shanghai 200240, China

Our recent paper: https://arxiv.org/abs/2308.16159

Three-body periodic collisionless equal-mass free-fall orbits revisited

Ivan Hristov ${ }^{1}$, Radoslava Hristova ${ }^{1}$, Veljko Dmitrašinović ${ }^{2}$, Kiyotaka Tanikawa ${ }^{3}$
${ }^{1}$ Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier blvd., Sofia 1136, Bulgaria.
${ }^{2}$ Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Zemun, P.O.Box 57, 11080 Beograd, Serbia.
${ }^{3}$ National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan.

Differential equations

The differential equations for the three-body problem are derived from Newton's second law and Newton's law of gravity:

$$
m_{i} \ddot{r}_{i}=\sum_{j=1, j \neq i}^{3} G m_{i} m_{j} \frac{\left(r_{j}-r_{i}\right)}{\left\|r_{i}-r_{j}\right\|^{3}}, i=1,2,3
$$

We consider normalization $G=m_{1}=m_{2}=m_{3}=1$ and planar motion. We solve the system numerically in the following first order form:

$$
\begin{gathered}
\dot{x}_{i}=v x_{i}, \dot{\boldsymbol{y}}_{i}=v y_{i} \\
\dot{v} \dot{x}_{i}=\sum_{j=1, j \neq i}^{3} \frac{\left(x_{j}-x_{i}\right)}{\left\|r_{i}-r_{j}\right\|^{3}}, v \dot{y}_{i}=\sum_{j=1, j \neq i}^{3} \frac{\left(y_{j}-y_{i}\right)}{\left\|r_{i}-r_{j}\right\|^{3}}, i=1,2,3
\end{gathered}
$$

So we have a vector of 12 unknown functions:

$$
X(t)=\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}, v x_{1}, v y_{1}, v x_{2}, v y_{2}, v x_{3}, v y_{3}\right)^{\top}
$$

The model treats the bodies as mass points.

Free fall initial configuration

The three equal mass bodies are placed in the initial triangle ABP at rest.

The bodies at A and B are fixed.
The body at P is somewhere in the yellow domain (Agekyan-Anosova's domain).

We have three parameters search-space the coordinates of point P and the period

Numerical methods

1) Grid (mesh)- search algorithm in combination with Newton's method
2) The elements of the linear system at each step of Newton's method are computed by high order highprecision Taylor-series method
3) The linear system is solved in linear least square sense using QRdecomposition
4) GMP library (GNU multiple precision arithmetic) is used for floating point arithmetic
5) The intensive computations are impossible without using a serious computational recourse. We have about 200x speed-up of our computations in Nestum cluster

Breaking the limits: The Taylor series method
R. Barrio ${ }^{\text {a,* }}$, M. Rodríguez ${ }^{\text {a }}$, A. Abad ${ }^{\text {b }}$, F. Blesa ${ }^{\text {c }}$
${ }^{\text {a }}$ GME, Depto. Matemática Aplicada and IUMA, Universidad de Zaragoza, E-50009 Zaragoza, Spain
${ }^{\mathrm{b}}$ GME, Depto. Física Teórica and IUMA, Universidad de Zaragoza, E-50009 Zaragoza, Spain
${ }^{\text {c }}$ GME, Depto. Física Aplicada, Universidad de Zaragoza, E-50009 Zaragoza, Spain

Results

- 25,582 initial conditions in AA-domain corresponding to 12,409 distinct solutions are found
- The distribution of initial conditions shows a remarkable structure (the "Maasai shield") similar to several other previously investigated properties of the free-fall problem
- Some 236 orbits have geometric symmetries, compared with only a few known before
- Several examples of so-called "stutter" orbits, predicted in 2012, have also been found

Acknowledgement

We acknowledged the access to the Nestum cluster @ HPC Laboratory, Research and Development and Innovation Consortium, Sofia Tech Park!

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 101101903. The JU receives support from the Digital Europe Programme and Germany, Bulgaria, Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain, Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia

[^0]: Henri Poincaré 1854-1912

